Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We have pursued the use of polymer-networked engineered nanoparticles as a candidate material capable of retaining information or perhaps even processing information in some prescribed way. Such operations would be of use for the neuromorphic engineering of materials that can compute intrinsically—that is, that they are in no way subject to a von Neumann architecture—and they have been identified as autonomous computing materials. Using trajectories integrated to much longer time steps than previously observed, we can now confirm that the response of the polymer-networked engineered nanoparticle arrays are highly sensitive to external perturbations. That is, the specific internal connections around given nanopar- ticles can be assigned to states useful for information processing, and the variations in their physical properties can result in specific responses allowing the state to be read. Moreover, their resulting equilibrium properties also depend on such external driving, and hence are subject to control which is a minimal requirement for these materials to be candidates for autonomous computing. We also demonstrate that using long polymer chains can help regulate the networks structures by increasing the 1st nearest links and reducing other links.more » « less
-
Abstract Control over the copy number and nanoscale positioning of quantum dots (QDs) is critical to their application to functional nanomaterials design. However, the multiple non-specific binding sites intrinsic to the surface of QDs have prevented their fabrication into multi-QD assemblies with programmed spatial positions. To overcome this challenge, we developed a general synthetic framework to selectively attach spatially addressable QDs on 3D wireframe DNA origami scaffolds using interfacial control of the QD surface. Using optical spectroscopy and molecular dynamics simulation, we investigated the fabrication of monovalent QDs of different sizes using chimeric single-stranded DNA to control QD surface chemistry. By understanding the relationship between chimeric single-stranded DNA length and QD size, we integrated single QDs into wireframe DNA origami objects and visualized the resulting QD-DNA assemblies using electron microscopy. Using these advances, we demonstrated the ability to program arbitrary 3D spatial relationships between QDs and dyes on DNA origami objects by fabricating energy-transfer circuits and colloidal molecules. Our design and fabrication approach enables the geometric control and spatial addressing of QDs together with the integration of other materials including dyes to fabricate hybrid materials for functional nanoscale photonic devices.more » « less
An official website of the United States government
